Applying object-based image analysis and knowledge-based classification to ADS-40 digital aerial photographs to facilitate complex forest land cover classification

نویسندگان

  • Yi-Ta Hsieh
  • Chaur-Tzuhn Chen
  • Jan-Chang Chen
چکیده

In general, considerable human and material resources are required for performing a forest inventory survey. Using remote sensing technologies to save forest inventory costs has thus become an important topic in forest inventory-related studies. Leica ADS-40 digital aerial photographs feature advantages such as high spatial resolution, high radiometric resolution, and a wealth of spectral information. As a result, they have been widely used to perform forest inventories. We classified ADS-40 digital aerial photographs according to the complex forest land cover types listed in the Fourth Forest Resource Survey in an effort to establish a classification method for categorizing ADS-40 digital aerial photographs. Subsequently, we classified the images using the knowledge-based classification method in combination with object-based analysis techniques, decision tree classification techniques, classification parameters such as object texture, shape, and spectral characteristics, a class-based classification method, and geographic information system mapping information. Finally, the results were compared with manually interpreted aerial photographs. Images were classified using a hierarchical classification method comprised of four classification levels (levels 1 to 4). The classification overall accuracy (OA) of levels 1 to 4 is within a range of 64.29% to 98.50%. The final result comparisons showed that the proposed classification method achieved an OA of 78.20% and a kappa coefficient of 0.7597. On the basis of the image classification results, classification errors occurred mostly in images of sunlit crowns because the image values for individual trees varied. Such a variance was caused by the crown structure and the incident angle of the sun. These errors lowered image classification accuracy and warrant further studies. This study corroborates the high feasibility for mapping complex forest land cover types using ADS-40 digital aerial photographs. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.015001]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Object-Based Land-Cover Mapping with High Resolution Aerial Photography at a County Scale in Midwestern USA

There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective to develop high accuracy land-cover m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018